Towards a First-Principles Evaluation of Transport Mechanisms in Molecular Wires

30 June 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Understanding charge transport through molecular wires is important for nanoscale electronics and biochemistry. Our goal is to establish a simple first-principles protocol for predicting the charge transport mechanism in such wires, in particular the crossover from coherent tunneling for short wires to incoherent hopping for longer wires. This protocol is based on a combination of density-functional theory with a polarizable continuum model introduced by Kaupp et al. for mixed-valence molecules, which we had previously found to work well for length-dependent charge delocalization in such systems. We combine this protocol with a new charge delocalization measure tailored for molecular wires, and we show that it can predict the tunneling-to hopping transition length with a maximum error of one subunit in five sets of molecular wires studied experimentally in molecular junctions at room temperature. This suggests that the protocol is also well suited for estimating the extent of hopping sites as relevant, e.g., for the intermediate tunneling-hopping regime in DNA.

Keywords

Molecular electronics
tunneling
Hopping Conduction
density functional theory
charge delocalization
Polarizable Continuum model
transport mechanism
first-principles calculation

Supplementary materials

Title
Description
Actions
Title
supporting information
Description
Actions
Title
cartesian coordinates
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.