Excited-State Vibration-Polariton Transitions and Dynamics in Nitroprusside

23 June 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Strong cavity coupling to molecular vibrations creates vibration-polaritons capable of modifying chemical reaction kinetics, product branching ratios, and charge transfer equilibria. However, the mechanisms impacting these molecular processes remain elusive. Furthermore, even basic elements determining the spectral properties of polaritons, such as selection rules, transition moments, and lifetimes, are poorly understood. Here, we use two-dimensional infrared and filtered pump–probe spectroscopy to report clear spectroscopic signatures and relaxation dynamics of excited vibration-polaritons formed from the cavity- coupled NO band of nitroprusside. We apply a multi-level quantum Rabi model that predicts transition frequencies and strengths that agree very well with our experiment. Notably, the polariton features decay ~3-4 times slower than the polariton dephasing time, indicating that they support incoherent population, a consequence of their partial matter character. Understanding the factors determining polariton population and dephasing lifetimes will impact polariton-modified energy transfer, photophysics, and chemistry.

Keywords

vibrational polaritons
Nitroprusside
2D infrared spectroscopy
Fabry-Perot cavity
Multi-Level Quantum Rabi Model

Supplementary materials

Title
Description
Actions
Title
257973 0 supp 4627499 qnjnzr
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.