Natural Killer Cell Inspired AIE Nanoterminator for Blood-Brain-Barrier Crossing via Tight-Junction Modulation and NIR-II Gliomas Theranostics

19 June 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Nature has always inspired robotic designs and concepts. It is conceivable that biomimic nanorobots will soon play a prominent role in medicine. In this paper, we developed a natural killer cell-mimic AIE nanoterminator (NK@AIEdots) by coating natural kill cell membrane on the AIE-active polymeric endoskeleton, PBPTV, a highly bright NIR-II AIE-active conjugated polymer. Owning to the AIE and soft-matter characteristics of PBPTV, as-prepared nanoterminator maintained the superior NIR-II brightness (quantum yield ~8%) and good biocompatibility. Besides, they could serve as tight junctions (TJs) modulator to trigger an intracellular signaling cascade, causing TJs disruption and actin cytoskeleton reorganization to form intercellular “green channel” to help themselves crossing Blood-Brain Barriers (BBB) silently. Furthermore, they could initiatively accumulate to glioblastoma cells in the complex brain matrix for high-contrast and through-skull tumor imaging. The tumor growth was also greatly inhibited by these nanoterminator under the NIR light illumination. As far as we known, The QY of PBPTV is the highest among the existing NIR-II luminescent conjugated polymers. Besides, the NK-cell biomimetic nanorobots will open new avenue for BBB-crossing delivery.

Keywords

Aggregation induced emission
Nanorobotics
NIR-II fluorophores
biomimicking membranes
blood brain barrier penetrance
theranostics

Supplementary materials

Title
Description
Actions
Title
manu(1) - dgjun-2020424 zpf-2 - dgjun-acs nano 1
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.