Sustainable Harvesting of Microalgae by Coupling Chitosan Flocculation and Electro-Floatation

16 June 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In this study, we proposed a new method for edible microalgae harvesting by coupling chitosan flocculation and electro-floatation using carbon electrodes, and tested it at different operation conditions. The surface charge of microalgae cells was measured to explore the underlying mechanisms. The responses of growth medium to microalgae harvesting were also investigated to evaluate the feasibility of sustainable utilization of culture medium.

(1) Microalgae harvesting efficiency

The microalgae harvesting efficiency of the proposed method were tested using Chlorella vulgaris (C. vulgaris). C. vulgariscells (FACHB-24) were purchased from the Institute of Hydrobiology, Chinese Academy of Sciences, and cultured in the BG11 medium, which consists of 500 mg L-1 Bicin, 100 mg L-1 KNO3, 100 mg L-1 b-C3H7O6PNa2, 50 mg L-1 NaNO3, 50 mg L-1Ca(NO3)2•4H2O, 50 mg L-1 MgCl2•6H2O, 40 mg L-1 Na2SO4, 20 mg L-1 H3BO3, 5 mg L-1 Na2EDTA, 5 mg L-1 MnCl2•4H2O, 5 mg L-1 CoCl2•6H2O and 0.8 mg L-1 Na2MoO4•2H2O, 0.5 mg L-1 FeCl3•6H2O and 0.5 mg L-1 ZnCl2. The batch cultures were conducted in an illuminating incubator (LRH-250-G, Guangdong Medical Apparatus Co., Ltd., China) with continuous cool white fluorescent light of 2500 ± 500 lux on a 12 h light and 12 h darkness regime at the temperature of 30 ± 1°C.

The microalgae harvesting efficiency system consists of a flat stir paddle (Zhongrun Water Industry Technology Development Co., Ltd., China) for mixing during chitosan flocculation and two round carbon electrode plates (Jinjia Metal Co., Ltd., China) for electro-floatation. The carbon electrode plate has a surface area of 55.4 cm2 and a thickness of 0.2 cm, which was horizontally installed at the bottom with a gap of 2 cm between the two plates. There are 85 small round holes on each carbon electrode plate to allow gas bubbles freely pass it during electrolysis, such that the effective surface area was 38.7 cm2. The electric current was supplied by a direct current power supply (DF1730SL5A, Ningbo Zhongce Dftek Electronics Co., Ltd., China).

C. vulgaris culture at the exponential growth phase was used in the microalgae harvesting test. The initial cell concentration was set to 3.63 × 1010 cells L-1. 0.5 L of readily prepared C. vulgaris solution was transferred to the harvesting cell. Water-soluble chitosan was purchased from Qingdao Yunzhou Bioengineering Co. Ltd., China. Prior to the test, a chitosan stock solution (2 g L-1) was prepared as follows: 1 g chitosan was added to 0.5 L distilled water and completely diluted by stirring. After chitosan was added, the microalgae solution was stirred at 200 rpm for 2 min and 40 rpm for another 10 min; electro-floatation was started in the last 5 min during chitosan flocculation. The microalgae solution was allowed to stand for 10 min, and then water samples were carefully collected from an outlet 2 cm above the carbon electrode plate to enumerate the cell number using an Axioskop 2 mot plus microscope (Carl ZEISS, Germany). The microalgae harvesting efficiency was calculated as (initial cell concentration-sample cell concentration)/initial cell concentration × 100%. In the test, the chitosan dosage was set to 0, 2, 4, 6, 8, 10, 12 and 15 mg L-1, and the current density was set to 0, 0.2, 0.4 and 0.6 A. All the tests were conducted in triplicate at the raw microalgae solution pH of 8.6.

(2) Surface charges of chitosan, microalgae cells and microalgae flocs

The surface charges of chitosan, microalgae cells and microalgae flocs were characterized using a Zetasizer 2000 (Malvern Co. United Kingdom).

(3) Sustainable utilization of microalgae culture medium

Before and after microalgae harvesting, medium nutrients (phosphate, ammonium and nitrate) were measured according to Chinese Monitoring Analysis Method of Water and Wastewater; medium pH and temperature were measured using a Yellow Springs Instruments (Yellow Springs, Ohio, USA)

(4) Cost evaluation

The cost of microalgae harvesting was estimated by summing flocculants and energy costs per unit of harvested microalgae biomass. The chitosan and electric power are 0.03 USD g-1 and 0.08 USD (kWh)-1, respectively.

Keywords

microalgae harvesting
chitosan flocculation
electro-floatation
sustainable utilization
microalgae-based engineering

Supplementary materials

Title
Description
Actions
Title
ACS-SI-20200614
Description
Actions
Title
ACS-MS-20200614
Description
Actions
Title
ACS-SI-20200614
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.