SyntaLinker: Automatic Fragment Linking with Deep Conditional Transformer Neural Networks

15 May 2020, Version 4
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Fragment based drug design represents a promising drug discovery paradigm complimentary to the traditional HTS based lead generation strategy. How to link fragment structures to increase compound affinity is remaining a challenge task in this paradigm. Hereby a novel deep generative model (SyntaLinker) for linking fragments is developed with the potential for applying in the fragment-based lead generation scenario. The state-of-the-art transformer architecture was employed to learn the linker grammar and generate novel linker. Our results show that, given starting fragments and user customized linker constraints, our SyntaLinker model can design abundant drug-like molecules fulfilling these constraints and its performance was superior to other reference models. Moreover, several examples were showcased that SyntaLinkercan be useful tools for carrying out drug design tasks such as fragment linking, lead optimization and scaffold hopping.

Keywords

Fragment Linking
Deep generative models
Conditional Transformer model

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.