Connecting Experimental Synthetic Variables with the Microstructure and Electronic Properties of Doped Ferroelectric Oxides Using High-Throughput Frameworks

29 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Doping remains as the most used technique to photosensitize ferroelectric oxides for solar cell applications. However, optimizing these materials is still a challenge. First, many variables should be considered, for instance dopant nature and concentration, synthesis method or temperature. Second, all these variables should be connected with the microstructure of the solid solution and its optoelectronic properties. Here, a computational high-throughput framework that combines Boltzmann statistics with DFT calculations is presented as a solution to accelerate the optimization of theses materials for solar cells applications. This approach has two main advantages: i) the automatic and systematic exploration of the configurational space and ii) the connection between the changes in the microstructure of the material and its electronic properties. One of the most studied doped-ferroelectric systems, [KNbO3]1−x[BaNi1/2Nb1/2O3−δ]x, is used as a study case. Our results not only agree with previous theoretical and experimental reports, but also explain the effect of some of the variables to consider when this material is synthesized.

Keywords

ferroelectric materials
solar cells
off-stoichiometric materials

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.