Abstract
Guided by the transition metal hydrogen atom transfer and radical-polar crossover concept, we developed a catalytic, Markovnikov-selective, functional-group tolerant, and scalable synthesis of cyclic carbamates, which are found in the structures of many bioactive compounds. This method not only provides common oxazolidinones but also six-to-eight-membered ring products. The reaction proceeds through the intramolecular displacement of an alkylcobalt(IV) in-termediate and dealkylation by 2,4,6-collidine; the activation energies of these steps were calculated by DFT. Cyclic ureas and cyclic phosphoramidates were also synthesized under the same reaction conditions.
Supplementary materials
Title
2020dealkylation SI1
Description
Actions
Title
2020dealkylation S2
Description
Actions