Tuning Multicolor Emission from a Single Fluorophore via Controlled Radical Polymerization-Mediated Charge Transfer

27 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Tuning emission color of molecular fluorophores is of fundamental interest as it directly reflects the manipulation of excited states at the quantum-mechanical level. Despite recent progress in molecular design and engineering on single fluorophores, a systematic methodology to obtain multicolor emission in aggregated or solid states, which gives rise to practical implications in different fields, remains scarce. This is due to the complex interplay between the charge-transfer (CT) and singlet excitons. In this study, we present a general strategy to tune the emission color of a single-fluorophore aggregate by controlled radical polymerization-mediated charge transfer. Using a library of well-defined styrenic donor (D) polymers grown from an acceptor (A) fluorophore by atom transfer radical polymerization (ATRP), we found that the solid-state emission color can be fine-tuned by varying three molecular parameters: (i) the monomer substituent, (ii) the end-groups of the polymer, and (iii) the polymer chain length. Experimental and theoretical investigations reveal that the color tunability originates from the structurally dependent through-space charge transfer (TSCT) process that regulates CT energy. We further demonstrate that the polymer systems can be processed into thin films enabling versatile photolithography.

Keywords

Multicolor Emission
Single Fluorophore
Solid state photoluminescence
Controlled Radical PolymerizationIn
Charge Transfer
TSCT systems

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.