Anti-Kasha System by Design: A New Gateway for Cell Differentiation Through Machine Learning

26 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Kasha’s rule, which claimed that all emissions of excitons are from the lowest excited state and independent of excitation energy, makes the utility of high energy excitons difficult and severely hinder the widespread application of organic photoluminescent materials in real-world. For decades, scientists try to break it to unleash the power of high energy excitons but get minimal progress, no rational guiding principles, and few applications. So far, anti-Kasha’s rule is still a purely academic concept. In this contribution, we proposed a designing principle for pure organic anti-Kasha’s rule system and synthesized a series of compounds by following this designing rule which are all display evident S 2 emission in dilute solutions as proposed. Besides, we introduced a convolutional neural network as an assistant to apply the anti-Kasha’s rule luminogens to cell differentiations with high accuracy (~98.3%), which provide a new direction of applications of anti-Kasha system.

Keywords

Kasha's rule
Anti Kasha's rule
intramolecular charge transfer
cell differentiation

Supplementary materials

Title
Description
Actions
Title
ESI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.