Building a Shp: A New Rare-Earth Metal-Organic Framework and Its Application in a Catalytic Photo-Oxidation Reaction

22 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The design and synthesis of new metal–organic frameworks (MOFs) is important from both a fundamental and application standpoint. In this work, a novel, highly‐connected rare‐earth (RE) MOF with shp topology is reported, named RE‐CU‐10 (RE = rare‐earth, CU = Concordia University), comprised of nonanuclear RE(III)‐cluster nodes and tetratopic pyrene‐based linkers. This represents the first time that the 1,3,6,8‐tetrakis(p‐benzoic acid)pyrene (H4TBAPy) linker is integrated in the shp topology. Y‐CU‐10 was explored as a heterogeneous photocatalyst for the selective oxidation and detoxification of a sulfur mustard simulant, 2‐chloroethyl ethyl sulfide (2‐CEES), showing a halflife for conversion to the less toxic 2‐chloroethyl ethyl sulfoxide (2‐CEESO) of 6.0 min.

Keywords

metal-organic frameworks (MOFs)
Rare Earth Elements
mustard gas simulant 2- chloroethyl ethyl sulfide

Supplementary materials

Title
Description
Actions
Title
Supplementary information Final ChemRxiv
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.