Norbornene-Functionalised Chitosan Hydrogels and Microgels via an Unprecedented Photo-Initiated Self-Assembly for Potential Biomedical Applications

21 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract


Access to biocompatible self-assembled gels and microgels is of great interests for a variety of biological applications from tissue engineering to drug delivery. Here, the facile synthesis of supramolecular hydrogels of norbornene (nb)-functionalised chitosan (CS-nb) via UV-triggered self-assembly in the presence of Irgacure 2959 (IRG) is reported. The in vitro stable hydrogels are injectable and showed pH-responsive swelling behaviour, while their structure and mechanical properties could be tuned by tailoring the stereochemistry of the norbornene derivative (e.g. endo- or -exo). Interestingly, unlike other nb-type hydrogels, the gels possess nanopores within their structure, which might lead to potential drug delivery applications. A gelation mechanism was proposed based on hydrophobic interactions following the combination of IRG on norbornene, as supported by 1H NMR. This self-assembly mechanism was used to access microgels of size 100-150 nm which could be further functionalised and showed no significant toxicity to human dermofibroblast cells.

Keywords

Polysaccharides
hydrogels
microgels
self-assembly
chitosan

Supplementary materials

Title
Description
Actions
Title
ESI exo-endo gels
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.