A Cyclic Di-GMP Network Is Present in Gram-Positive Streptococcus and Gram-Negative Proteus Species

18 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Cyclic di-GMP is a ubiquitous second messenger in bacteria. This work describes the occurrence of a cyclic di-GMP signaling network in Gram-positive Streptococcus species and Gram-negative Proteus. After identification of candidate diguanylate cyclases by homology search in the respective species, the open reading frames were cloned and proteins expressed. Production of cyclic di-GMP was demonstrated by riboswitch assays, detection of cyclic di-GMP in cell lysates by MALDI-FTMS and in cell extracts by standard LC-MS/MS. Expression of the diguanylate cyclases in the heterologous host Salmonella typhimurium showed the expected physiological activity, namely up regulation of biofilm formation and down regulation of motility. The co-localisation of both sole diguanylate cyclases with cellulose or cellulose-like synthases indicates exopolysaccharide biosynthesis to be a conserved trait of cyclic di-GMP signaling.

Keywords

Second messenger cyclic-di-GMP
biofilm communities
Riboswitch
mass spectrometry data
MALDI FTMS
LC MS/MS

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.