Generate, Repurpose, Validate: A Receptor-Mediated Atom-by-Atom Drug Generation for SARS-Cov-2 Spike Protein and Similarity-Mapped Drug Repurposing for COVID-19 with Rigorous Free Energy Validation Using Well-Tempered Metadynamics

18 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Finding a cure for Covid-19 is of immediate and paramount importance. In this study, we propose new and repurpose drugs to prevent SARS-Cov-2 (Covid-19) viral attack on human cells. Our study comprises three steps: generation of new molecules, structural similarity mapping to existing approved and investigational drugs, and validation of their binding strengths to the viral spike proteins based on rigorous all-atom well-tempered metadynamics free energy calculations. We show that some of our new molecules and some of the existing drugs bind more strongly than human ACE2 protein to the viral spike protein. Therefore, these drug molecules may have the potential to be repurposed as a preventive therapy for Covid-19, subject to further experimental verifications.

Keywords

Covid-19
de novo drug design
Spike protein
human ACE2
repurposing therapeutics
docking
molecular dynamics
free energy
well-tempered metadynamics

Supplementary materials

Title
Description
Actions
Title
SICovid19May20
Description
Actions
Title
DNVLive covid SI small
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.