Shermo: A General Code for Calculating Molecular Thermochemistry Properties

18 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Calculation of molecular thermodynamic quantities is one of the most frequently involved task in daily quantum chemistry studies. In this article, we present a general, stand-alone, powerful and flexible code named Shermo for calculating various common thermochemistry data. This code is compatible with Gaussian, ORCA, GAMESS-US and NWChem and has many unique advantages: the output information is very easy to comprehend; thermodynamic quantities can be fully decomposed to contributions of various sources; temperature and pressure can be conveniently scanned; two quasi-rigid-rotor harmonic oscillator (quasi-RRHO) models are supported to properly deal with low frequencies; different frequency scale factors can be simultaneously specified for calculating different thermodynamic quantities; conformation weighted thermodynamic data can be directly evaluated; the code can be easily run and embedded into shell script. We hope the Shermo program will bring great convenience to quantum chemists. This code can be freely obtained at http://sobereva.com/soft/shermo.

Keywords

Shermo
thermochemistry
thermodynamic
conformation
free energy
molecular vibration
frequency scale factor
RRHO
harmonic approximation
Gaussian
ORCA

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.