Systematic and Quantitative Structure-Property Relationships of Polymeric Medical Nanomaterials: From Systematic Synthesis and Characterization to Computer Modeling and Nano-Bio Interaction and Toxicity

18 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Nanomaterials are suitable for numerous applications in medicine. Building on their design versatility, they enable construction of novel targeted therapies, including personalized medicine. However, the freedom of design entails a multitude of parameters, which have to be optimized for application in nanomedicine.
Currently,nonamaterial assortment is mainly anecdotal, non-systematic and non-representative. In contrast to the mostly oligo-disciplinary nature of many publications, we here present a systematic and comprehensive multidisciplinary approach to chemical synthesis, physicochemical characterization, computer modeling, and in vitro and in vivo exploration of nanomaterials that may be suited for medical application. Specially, we design and synthesize a library of amphiphilic oxazoline/siloxane block co-polymers with varying chain lengths and different end groups. In this regard, the computer modeling of the current polymer library is contributing to further optimization of these nanomaterials in a fast and reliable, and efficient way. In conclusion, these outstandingly versatile and non-toxic polymers can be synthesized rapidly and easily and self-assemble to polymeric micelles in aqueous solutions, thus rendering them amenable for numerous medical diagnostic and therapeutic applications

Keywords

PDMS-PMOXA polymer
computer modeling
self-assembling nanoparticle
structure-property relationship
nano-bio interaction

Supplementary materials

Title
Description
Actions
Title
Support information 07.05
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.