Deep Learning Enabled Inorganic Material Generator

18 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Recent years have witnessed utilization of modern machine learning approaches for predicting properties of material using available datasets. However, to identify potential candidates for material discovery, one has to systematically scan through a large chemical space and subsequently calculate the properties of all such samples. On the other hand, generative methods are capable of efficiently sampling the chemical space and can generate molecules/materials with desired properties. In this study, we report a deep learning based inorganic material generator (DING) framework consisting of a generator module and a predictor module. The generator module is developed based upon conditional variational autoencoders (CVAE) and the predictor module consists of three deep neural networks trained for predicting enthalpy of formation, volume per atom and energy per atom chosen to demonstrate the proposed method. The predictor and generator modules have been developed using a one hot key representation of the material composition. A series of tests were done to examine the robustness of the predictor models, to demonstrate the continuity of the latent material space, and its ability to generate materials exhibiting target property values. The DING architecture proposed in this paper can be extended to other properties based on which the chemical space can be efficiently explored for interesting materials/molecules.

Keywords

material design
inverse design
generative modeling
variational autoencoder
inorganic material

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.