Abstract
Electrosprayed droplets have emerged as a new environment for accelerating chemical reactions by orders of magnitude relative to their bulk analogues. Nevertheless the reaction mechanisms are still unknown. Unraveling the ion spatial distribution is critical as to where charge transfer reactions are likely to take place and as to their effect on the ionic atmosphere of macroions. Here we investigate the ion spatial distributions and surface charge in aqueous droplets with diameters in the range of 5 nm to 16 nm with and without counterions using molecular dynamics. The charge carriers are Na, Cl, I, ions and model hydronium ions. For the first time droplet sizes that are accessible to experimental scrutiny are modeled atomistically.
Supplementary materials
Title
ions-supp-archive v2
Description
Actions