Selecting Machine Learning Models for Metallic Nanoparticles

15 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The outcome of machine learning is influenced by the features used to describe the data, and various metrics are used to measure model performance. In this study we use five different feature sets to describe the same 4000 gold nanoparticles, and 14 different machine learning methods to compare a total of 70 high scoring models. We then use classification and regression to show which meta-features of data sets or machine learning algorithms are important when making a selection. We find that number of features, and those that are strongly correlated, determine the class of model that should be used, but overall quality is almost entirely determined by the cross-validation score, regardless of the sophistication of the algorithm.

Keywords

machine Learning Methods Enable Predictive Modeling
machine learning
nanoparticles
nanoinformatics
catalysts
gold
data science
regression

Supplementary materials

Title
Description
Actions
Title
ML-SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.