Low-frequency (gigahertz to terahertz) depolarized Raman scattering off n-alkanes, cycloalkanes, and six-membered rings: a physical interpretation

13 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Molecular liquids have long been known to undergo various distinct and simple intermolecular motions, from fast librations and cage rattling oscillations to slow orientational and translational diffusion. However, their resultant gigahertz to terahertz spectra are far from simple, appearing as broad shapeless bands that span many orders of magnitude of frequency making meaningful interpretation troublesome. Ad hoc spectral lineshape fitting has become a notoriously fine art in the field; a unified approach to handling such spectra is long overdue. Here we apply ultrafast optical Kerr-effect (OKE) spectroscopy to study the intermolecular dynamics of room temperature n-alkanes, cycloalkanes, and six-carbon rings, as well as liquid methane and propane. This work provides stress-tests and converges upon an experimentally robust model across simple molecular series and temperatures, providing a blueprint for the interpretation of the dynamics of van der Waals liquids. This will enable the interpretation of low frequency spectra of more complex liquids.

Keywords

OKE spectra
OKE
Raman spectroscopy
Liquids
dynamics
ultrafast
alkanes
cycloalkanes
librations
cage rattling
diffusion

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.