Iterative Supervised Principal Component Analysis-Driven Ligand Design for Regioselective Ti-Catalyzed Pyrrole Synthesis

13 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Herein, we describe the use of iterative supervised principal component analysis (ISPCA) in de novo catalyst design. The regioselective synthesis of 2,5-dimethyl-1,3,4-triphenyl-1H- pyrrole (C) via Ti- catalyzed formal [2+2+1] cycloaddition of phenyl propyne and azobenzene was targeted as a proof of principle. The initial reaction conditions led to an unselective mixture of all possible pyrrole regioisomers. ISPCA was conducted on a training set of catalysts, and their performance was regressed against the scores from the top three principal components. Component loadings from this PCA space along with k-means clustering were used to inform the design of new test catalysts. The selectivity of a prospective test set was predicted in silico using the ISPCA model, and only optimal candidates were synthesized and tested experimentally. This data-driven predictive-modeling workflow was iterated, and after only three generations the catalytic selectivity was improved from 0.5 (statistical mixture of products) to over 11 (> 90% C) by incorporating 2,6-dimethyl- 4-(pyrrolidin-1-yl)pyridine as a ligand. The successful development of a highly selective catalyst without resorting to long, stochastic screening processes demonstrates the inherent power of ISPCA in de novo catalyst design and should motivate the general use of ISPCA in reaction development.

Keywords

statistics
principal component analysis
titanium
organometallics
pyrrole
ligand design
catalyst design

Supplementary materials

Title
Description
Actions
Title
PCA SI
Description
Actions
Title
PCA4U2
Description
Actions
Title
PCAModelingData
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.