Reversible Electrochemical Ion Intercalation at an Electrified Liquid|liquid Interface Functionalised with Porphyrin Nanostructures

13 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Ion intercalation into solid matrices influences the performance of key components in most energy storage devices (Li-ion batteries, supercapacitors, fuel cells, etc.). Electrochemical methods provide key information on the thermodynamics and kinetics of these ion transfer processes but are restricted to matrices supported on electronically conductive substrates. In this article, the electrified liquid|liquid interface is introduced as an ideal platform to probe the thermodynamics and kinetics of reversible ion intercalation with non-electronically active matrices. Zinc(II) meso-tetrakis(4-carboxyphenyl)porphyrins were self-assembled into floating films of ordered nanostructures at the water|a,a,a-trifluorotoluene interface. Electrochemically polarising the aqueous phase negatively with respect to the organic phase lead to organic ammonium cations intercalating into the zinc porphyrin nanostructures by binding to anionic carboxyl sites and displacing protons through ion exchange at neutral carboxyl sites. The cyclic voltammograms suggested a positive cooperativity mechanism for ion intercalation linked with structural rearrangements of the porphyrins within the nanostructures, and were modelled using a Frumkin isotherm. The model also provided a robust understanding of the dependence of the voltammetry on the pH and organic electrolyte concentration. Kinetic analysis was performed using potential step chronoamperometry, with the current transients composed of “adsorption” and nucleation components. The latter were associated with domains within the nanostructures where, due to structural rearrangments, ion binding and exchange took place faster. This work opens opportunities to study the thermodynamics and kinetics of purely ionic ion intercalation reactions (not induced by redox reactions) in floating solid matrices using any desired electrochemical method.

Keywords

Ion Intercalation Kinetics
Ion Intercalation Thermodynamics
Porphyrin Nanostructures
Interface between Two Immiscible Electrolyte Solutions

Supplementary materials

Title
Description
Actions
Title
Electronic Supporting Information
Description
Actions
Title
ChemRxiv Manuscript
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.