Infrared Scattering-Type Scanning Near-Field Optical Microscopy in Water

12 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Infrared (IR) absorption spectroscopy detects state and chemical composition of biomolecules solely by their inherent vibrational fingerprints. Major disadvantages like the lack of spatial resolution and sensitivity were compensated lately by the use of pointed probes as local sensors enabling the detection of quantities as few as hundreds of proteins with nanometer precision. This makes infrared scattering-type scanning near-field optical microscopy a very powerful tool in life science. The strong absorption of infrared radiation of liquid water, however, still prevents to simply access the measured quantity – light scattered at the probing atomic force microscope tip. Here we report on the local IR response of biological membranes immersed in aqueous bulk solution. We make use of a silicon solid immersion lens as substrate and focusing optics to achieve detection efficiencies sufficient to yield IR near-field maps of purple membranes. We scrutinized our experimental findings by applying theoretical models. Finally, we suggest a means to improve the imaging quality by laser scanning assisted scattering-type scanning near-field optical microscopy. We believe that IR scattering-type scanning near-field optical microscopy will resolve biological structures in their native environments at nm resolution without the need for labeling.

Keywords

Infrared spectroscopy
Scanning near-field optical microscopy
nanoscopy
membrane protein
bacteriorhodopsin
IR spectroscopy
biomembranes

Supplementary materials

Title
Description
Actions
Title
supplementary information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.