Defect Engineering for Quantum Grade Rare-Earth Nanocrystals

12 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In this work, we demonstrate that a novel post-treatment process that includes multi-step high-temperature annealing followed by high-power microwave oxygen plasma processing advantageously improves key properties for quantum technologies. We obtain single crystalline nanoparticles (NPs) of 100 nm diameter, presenting bulk-like inhomogeneous linewidths and population lifetimes (T1). Furthermore, a significant coherence lifetime (T2) extension, up to a factor of 5, is successfully achieved by modifying the oxygen-related point defects in the

NPs by the oxygen plasma treatment. These promising results confirm the potential of these engineered RE NPs to integrate devices such as cavity-based single photon sources, quantum memories and processors. In addition, our strategy could be applied to a large variety of oxides to obtain outstanding crystalline quality NPs for a broad range of applications.


Keywords

Rare earths
Quantum Technologies
Nanoparticles
Coherence Lifetimes
oxygen plasma treatment

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.