Liquid Crystal Coacervates Composed of Short Double Stranded DNA and Cationic Peptides

30 April 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Phase separation of nucleic acids and proteins is a ubiquitous phenomenon regulating sub-cellular compartment structure and function. While complex coacervation of flexible single stranded nucleic acids is broadly investigated, coacervation of double stranded DNA (dsDNA) is less studied because of its propensity to generate solid precipitates. Here, we reverse this perspective by showing that short dsDNA and poly-L-lysine coacervates can escape precipitation while displaying a surprisingly complex phase diagram, including the full set of liquid crystal (LC) mesophases observed to date in bulk dsDNA. LC-coacervate structure was characterized upon variations in temperature and monovalent salt, DNA and peptide concentrations, which allow continuous transitions between all accessible phases. A deeper understanding of LC-coacervates can gain insights to decipher structures and phase transition mechanisms within biomolecular condensates, to design stimuli-responsive multi-phase synthetic compartments with different degrees of order and to exploit self-assembly driven cooperative prebiotic evolution of nucleic acids and peptides.

Keywords

phase separation
complex coacervation
liquid crystal
supramolecular assembly
membraneless organelles

Supplementary materials

Title
Description
Actions
Title
Movie S1
Description
Actions
Title
Movie S2
Description
Actions
Title
Movie S3
Description
Actions
Title
SI chemRxive final 2
Description
Actions
Title
Figure 1
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.