Abstract
Phase separation of nucleic acids and proteins is a ubiquitous phenomenon regulating sub-cellular compartment structure and function. While complex coacervation of flexible single stranded nucleic acids is broadly investigated, coacervation of double stranded DNA (dsDNA) is less studied because of its propensity to generate solid precipitates. Here, we reverse this perspective by showing that short dsDNA and poly-L-lysine coacervates can escape precipitation while displaying a surprisingly complex phase diagram, including the full set of liquid crystal (LC) mesophases observed to date in bulk dsDNA. LC-coacervate structure was characterized upon variations in temperature and monovalent salt, DNA and peptide concentrations, which allow continuous transitions between all accessible phases. A deeper understanding of LC-coacervates can gain insights to decipher structures and phase transition mechanisms within biomolecular condensates, to design stimuli-responsive multi-phase synthetic compartments with different degrees of order and to exploit self-assembly driven cooperative prebiotic evolution of nucleic acids and peptides.