Automated Framework for Developing Predictive Machine Learning Models for Data-Driven Drug Discovery

07 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In this manuscript we describe the development of an automated framework for the curation of chemogenomics data and to develop QSAR models for virtual screening using the open-source KNIME software. The workflow includes four modules: (i) dataset preparation and curation; (ii) chemical space analysis and structure-activity relationships (SAR) rules; (iii) modeling; and (iv) virtual screening (VS). As case studies, we applied these workflows to four datasets associated with different endpoints. The implemented protocol can efficiently curate chemical and biological data in public databases and generates robust QSAR models. We provide scientists a simple and guided cheminformatics workbench following the best practices widely accepted by the community, in which scientists can adapt to solve their research problems. The workflows are freely available for download in GitHub.

Keywords

Drug discovery
KNIME
Predictive modeling
Machine learning
Virtual screening
QSAR
Cheminformatics

Supplementary materials

Title
Description
Actions
Title
File S1
Description
Actions
Title
File S2
Description
Actions
Title
File S3
Description
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.