Accelerated Modeling of Lithium Diffusion in Solid State Electrolytes Using Artificial Neural Networks

07 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

There is great interest in solid state lithium electrolytes to replace the flammable organic electrolyte for an all solid state battery. Previous efforts trying to understand the structure-function relationships resulting in high ionic conductivity materials have mainly relied on ab initio molecular dynamics. Such simulations, however, are computationally demanding and cannot be reasonably applied to large systems containing more than a few hundred atoms. Herein, we investigate using artificial neural networks (ANN) to accelerate the calculation of high accuracy atomic forces and energies used during molecular dynamics (MD) simulations, to eliminate the need for costly ab initio force and energy evaluation methods, such as density functional theory (DFT). After carefully training a robust ANN for four and five element systems, we obtain nearly identical lithium ion diffusivities for Li10GeP2S12 (LGPS) when benchmarking the ANN-MD results with DFT-MD. To demonstrate the power of the outlined ANN-MD approach we apply it to a doped LGPS system to calculate the effect of concentrations of chlorine on the lithium diffusivity at a resolution that would be unrealistic to model with DFT-MD. We find that ANN-MD simulations can provide the framework to study systems that require a large number of atoms more efficiently while maintaining high accuracy.

Keywords

Machine Learning
Artificial Neural Networks
Solid State Electrolyte
Ionic Diffusion
Molecular Dynamics

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.