Mechanism of the Anthracene-Transfer in a Topochemically Controlled Regiospecific Antipodal C60 Difunctionalization

12 March 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Ever since the discovery of fullerenes, their mono- and multi-functionalization by exohedral addition chemistry has been a fundamental topic. A few years ago, a topochemically controlled regiospecific di-functionalization of C60 fullerene by anthracene in the solid state was discovered. In the present work, we analyze the mechanism of this unique reaction, where an anthracene molecule is transferred from one C60 mono-adduct to another one under exclusive formation of equal amounts of C60 and of the difficult to make, highly useful, antipodal C60 bis-adduct. Our herein disclosed dispersion corrected DFT studies show the anthracene transfer to take place in a synchronous retro Diels-Alder/Diels-Alder reaction: an anthracene molecule dissociates only partially from one fullerene when already undergoing bonding interactions with a neighboring fullerene molecule, facilitating the reaction kinetically. Hence, the anthracene transfer occurs via a stabilized intermediate, in which a planar anthracene molecule is sandwiched between two neighboring fullerenes and forms equally strong “double-decker” type π-π stacking interactions with both of these fullerenes. Analysis with the distortion interaction model shows that the anthracene unit of the intermediate is almost planar with minimal distortion. This analysis sheds light on the existence of simultaneous noncovalent interactions engaging both of the two faces of a planar polyunsaturated ring and two convex fullerene surfaces in an unprecedented ‘inverted sandwich’ structure.

Keywords

Reaction mechanism
fullerene functionalization
non-covalent interactions
dft

Supplementary materials

Title
Description
Actions
Title
Supporting information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.