Chiral Cyclic [n]Spirobifluorenylenes: Carbon Nanorings Consisting of Helically Arranged Quaterphenyl Rods Illustrating Partial Units of Woven Patterns

23 March 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Chiral cyclic [n]spirobifluorenylenes consisting of helically arranged quaterphenyl rods, illustrating partial units of woven patterns, were designed and synthesized as a new family of carbon nanorings. The synthesis was accomplished by the Ni(0)-mediated Yamamoto-coupling of chiral spirobifluorene building blocks. The structures of the cyclic 3- and 4-mers were determined by X-ray crystallographic analysis. These carbon nanorings exhibited a strong violet colored emission with high quantum yields in solution (95%, 93%, and 94% for 3-, 4-, and 5-mer, respectively). Other spectroscopic properties, including their chiroptical properties, were also investigated. The gvalues for circularly polarized luminescence were found to be in the order of 10-3, where that of the 4-mer showed a relatively higher value 8.5 x 10-3. Characteristic spiroconjugation induced by multiple (≧ 3) bifluorenyl units, for example the even-odd effect of the number of units in the matching of the sign of the orbitals, were also revealed by DFT calculations.

Keywords

Carbon nanorings
Cyclophanes
Homoconjugation
Macrocycles
p-Phenylene
Spirobifluorene
Spiroconjugation
Weaves

Supplementary materials

Title
Description
Actions
Title
Amaya SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.