On the Use of DFT+U to Describe the Electronic Structure of TiO2 Nanoparticles: (TiO2)35 as a Case Study

30 April 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

One of the main drawbacks in the density functional theory (DFT) formalism is the underestimation of the energy gaps in semiconducting materials. The combination of DFT with an explicit treatment of electronic correlation with a Hubbard-like model, known as DFT+U method, has been extensively applied to open up the energy gap in materials. Here, we introduce a systematic study where the selection of U parameter is analyzed considering two different basis sets: plane-waves (PWs) and numerical atomic orbitals (NAOs), together with different implementations for including U, to investigate the structural and electronic properties of a well-defined bipyramidal (TiO2)35 nanoparticle (NP). This study reveals, as expected, that a certain U value can reproduce the experimental value for the energy gap. However, there is a high dependence on the choice of basis set and, and on the +U parameter employed. The present study shows that the linear combination of the NAO basis functions, as implemented in FHI-aims, requires a lower U value than the simplified rotationally invariant approaches as implemented in VASP. Therefore, the transferability of U values between codes is unfeasible and not recommended, demanding initial benchmark studies for the property of interest as a reference to determine the appropriate value of U.

Keywords

TiO2
Nanoparticle
DFT
DFT+U
Plane Wave Basis
Numerical Atomic Orbital Basis

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.