Application of Life Cycle Assessment and Machine Learning for High-Throughput Screening of Green Chemical Substitutes

29 April 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The production process of many active pharmaceutical ingredients such as sitagliptin could cause severe environmental problems due to the use of toxic chemical materials and production infrastructure, energy consumption and wastes treatment. The environmental impacts of sitagliptin production process were estimated with life cycle assessment (LCA) method, which suggested that the use of chemical materials provided the major environmental impacts. Both methods of Eco-indicator 99 and ReCiPe endpoints confirmed that chemical feedstock accounted 83% and 70% of life-cycle impact, respectively. Among all the chemical materials used in the sitagliptin production process, trifluoroacetic anhydride was identified as the largest influential factor in most impact categories according to the results of ReCiPe midpoints method. Therefore, high-throughput screening was performed to seek for green chemical substitutes to replace the target chemical (i.e. trifluoroacetic anhydride) by the following three steps. Firstly, thirty most similar chemicals were obtained from two million candidate alternatives in PubChem database based on their molecular descriptors. Thereafter, deep learning neural network models were developed to predict life-cycle impact according to the chemicals in Ecoinvent v3.5 database with known LCA values and corresponding molecular descriptors. Finally, 1,2-ethanediyl ester was proved to be one of the potential greener substitutes after the LCA data of these similar chemicals were predicted using the well-trained machine learning models. The case study demonstrated the applicability of the novel framework to screen green chemical substitutes and optimize the pharmaceutical manufacturing process.

Keywords

Machine learning
Life cycle assessment
Green chemistry
High-throughput screening
Pharmaceutical Manufacturing

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.