Reduced Density Matrix Cumulants: The Combinatorics of Size-Consistency and Generalized Normal Ordering

27 April 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Reduced density matrix cumulants play key roles in the theory of both reduced density matrices and multiconfigurational normal ordering, but the underlying formalism has remained mysterious. We present a new, simpler generating function for reduced density matrix cumulants that is formally identical to equating the coupled cluster and configuration interaction ansätze. This is shown to be a general mechanism to convert between a multiplicatively separable quantity and an additively separable quantity, as defined by a set of axioms. It is shown that both the cumulants of probability theory and reduced density matrices are entirely combinatorial constructions, where the differences can be associated to changes in the notion of "multiplicative separability'' for expectation values of random variables compared to reduced density matrices. We compare our generating function to that of previous works and criticize previous claims of probabilistic significance of the reduced density matrix cumulants. Finally, we present the simplest proof to date of the Generalized Normal Ordering formalism to explore the role of reduced density matrix cumulants therein.

Keywords

cumulant
reduced density matrices
Normal Ordering
generalized normal ordering
size consistency
size extensivity

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.