Selenomethionine as an Expressible Handle for Bioconjugations

21 April 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Site-selective chemical protein ligation reactions are enabling tools for chemical biology. Herein, we employ a physical organic study to refine the selenomethionine (SeM) benzylation as a practical protein bioconjugation strategy. SeM is readily introduced through auxotrophic expression and exhibits unique nucleophilic properties that allow it to be selectively modified even in the presence of cysteine. The resulting benzylselenonium adduct is stable at physiological pH, selectively labile to glutathione and embodies a broadly tuneable reactivity profile. Guided by a mechanistic analysis of the reaction, a 4-bromomethylphenylacetyl linker is identified for efficient conjugations of complex organic molecules to SeM containing proteins. This optimized benzyl linker exhibits a rate constant of 3x10-1 M-1s-1, facilitating efficient conjugation at micromolar concentrations. The selenonium conjugate is further advanced through a linker that can be selectively photo-locked or reductively cleaved on demand. This tool-kit of selenonium forming reagents have broad potential in the development of chemically enhanced proteins.

Keywords

Bioorthogonal chemistry
bioconjugation tools
Selenomethionine

Supplementary materials

Title
Description
Actions
Title
Bioconj SI
Description
Actions
Title
SeM TOC Corrected
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.