Ammonia Formation Catalyzed by Dinitrogen-Bridged Dirhenium Complex Bearing PNP-Pincer Ligands under Mild Reaction Conditions

23 April 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

A series of rhenium complexes bearing a pyridine-based PNP-type pincer ligand are synthesized from rhenium phosphine complexes as precursors. A dinitrogen-bridged dirhenium complex bearing the PNP-type pincer ligands catalytically converts dinitrogen into ammonia in the reaction with KC8 as a reductant and [HPCy3]BArF4 (Cy = cyclohexyl, ArF = 3,5-(CF3)2C6H3) as a proton source at –78 °C to afford 8.4 equiv of ammonia based on the rhenium atom of the catalyst. The rhenium-dinitrogen complex also catalyzes silylation of dinitrogen in the reaction with KC8 as a reductant and Me3SiCl as a silylating reagent under ambient reaction conditions to afford 11.3 equiv of tris(trimethylsilyl)amine based on the rhenium atom of the catalyst. These results demonstrate the first successful example of catalytic nitrogen fixation under mild reaction conditions by using rhenium-dinitrogen complexes as catalysts.

Keywords

Ammonia
Nitrogen fixation
Rhenium

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.