Disentangling Viral Entry Kinetics Using Lipid Bilayers Coating Silica Nanoparticles

17 April 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Enveloped viruses infect cells via fusion between the viral envelope and a cellular membrane. This membrane fusion process is driven by viral proteins, but slow stochastic protein activation dominates fusion kinetics, making it challenging to probe the role of membrane mechanics in viral entry directly. We have used bilayer-coated silica nanoparticles to restrict the deformability of lipid membranes in a controllable manner. These bilayer-coated nanoparticles are then used in a single-particle fusion assay with infectious influenza virus. We observe that as we vary the free energy of membrane deformation by changing nanoparticle size, we obtain a corresponding response in fusion kinetics and apparent fusion protein stoichiometry. We thus directly measure the effect of membrane deformability on the free-energy barrier to membrane fusion by influenza, overcoming the masking effect of slow protein activation kinetics.

Keywords

membrane fusion
supported lipid bilayers
Silica Nanoparticles Grown
influenza virus circulation
membrane deformability

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.