Electric-Field Assisted Modulation of Surface Thermochemistry

17 April 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Conventional catalyst design has enhanced reactivity and product selectivity through control of surface thermochemistry by tunable surface composition and the surrounding environment (e.g., pore structure). In this work, the prospect for electric field towards controlling product selectivity and reaction networks on the Pt(111) surface was evaluated with periodic density functional theory (DFT) calculations in concert with machine learning (ML) algorithms. Linear scaling relationships (LSRs) for adsorption energies of surface species in electric field were shown to: (i) be distinct as compared to zero-field LSRs across metals, and (ii) linearly correlate with adsorption energies of H* rather than the binding element. The slope of LSRs linearly correlated with the zero-field dipole moment. A random forest ML regression algorithm predicted field-dependent adsorption energies with a mean absolute error (0.12 eV) comparable to DFT. Overall, this study identifies the path forward for electric field-assisted catalysis, specifically towards catalyst poisoning, product selectivity, and control of reaction pathways.

Keywords

Electric Field
Adsorption
Catalysis
Methanol
Formic Acid
Dipole Moments
Work Function

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.