Abstract
Herein, we describe an efficient method to prepare polysubstituted pyrroles via a copper-hydride (CuH)-catalyzed enyne-nitrile coupling reaction. This protocol accommodates both aromatic and aliphatic substituents and a broad range of functional groups, providing a variety of N-H pyrroles in good yields and with high regioselectivity. We propose that the Cu-based catalyst promotes both the initial reductive coupling and subsequent cyclization steps. Density functional theory (DFT) calculations were performed to elucidate the reaction mechanism.
Supplementary materials
Title
SI Pyrrole Synthesis 1 Experiment
Description
Actions
Title
SI Pyrrole Synthesis 2 Calculation
Description
Actions