Data-Driven Approaches Can Overcome Limitations in Multireference Diagnostics

13 April 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

High-throughput computational screening typically employs methods (i.e., density functional theory or DFT) that can fail to describe challenging molecules, such as those with strongly correlated electronic structure. In such cases, multireference (MR) correlated wavefunction theory (WFT) would be the appropriate choice but remains more challenging to carry out and automate than single-reference (SR) WFT or DFT. Numerous diagnostics have been proposed for identifying when MR character is likely to have an effect on the predictive power of SR calculations, but conflicting conclusions about diagnostic performance have been reached on small data sets. We compute 15 MR diagnostics, ranging from affordable DFT-based to more costly MR-WFT-based diagnostics, on a set of 3,165 equilibrium and distorted small organic molecules containing up to six heavy atoms. Conflicting MR character assignments and low pairwise linear correlations among diagnostics are also observed over this set. We evaluate the ability of existing diagnostics to predict the percent recovery of the correlation energy, %Ecorr. None of the DFT-based diagnostics are nearly as predictive of %Ecorr as the best WFT-based diagnostics. To overcome the limitation of this cost–accuracy trade-off, we develop machine learning (ML, i.e., kernel ridge regression) models to predict WFT-based diagnostics from a combination of DFT-based diagnostics and a new, size-independent 3D geometric representation. The ML-predicted diagnostics correlate as well with MR effects as their computed (i.e., with WFT) values, significantly improving over the DFT-based diagnostics on which the models were trained. These ML models thus provide a promising approach to improve upon DFT-based diagnostic accuracy while remaining suitably low cost for high-throughput screening.

Keywords

multireference diagnostics
multireference character
theoretical chemistry
correlation energy
strong correlation
electronic structure
small organic molecules

Supplementary materials

Title
Description
Actions
Title
A MRML-I TOC HJK v2
Description
Actions
Title
SI MRML1 Data 04112020
Description
Actions
Title
SI MRML1 v6
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.