Abstract
Plasmon-assisted transformations of organic compounds represent a novel opportunity for conversion of light to chemical energy at room temperature. Herein, we propose a comprehensive investigation of plasmon-triggered decomposition of iodonium salts containing various substituents (ISs). We found that plasmon interaction with unsymmetrical ISs led to the intramolecular excitation of electron followed by the regioselective cleavage of C–I bond with the formation of electron-rich radical species. Such unprecedented C–I cleavage brings the possibility of selective surface modification using ISs. The high regioselectivity is explained by the direct excitation of electron to LUMO with the formation of dissociative excited state ac-cording to quantum-chemical modeling.