Synthesis and Dual-Mode Electrochromism of Anisotropic Monoclinic Nb12O29 Colloidal Nanoplatelets

10 April 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Transition metal oxide nanocrystals with dual-mode electrochromism hold promise for smart windows enabling spectrally selective solar modulation. We have developed the colloidal synthesis of anisotropic monoclinic Nb12O29 nanoplatelets (NPLs) to investigate the dual-mode electrochromism of niobium oxide nanocrystals. The precursor for synthesizing NPLs was prepared by mixing NbCl5 and oleic acid to form a complex that was subsequently heated to form an oxide-like structure capped by oleic acid, denoted as niobium oxo cluster. By initiating the synthesis using niobium oxo clusters, preferred growth of NPLs over other polymorphs was observed. The structure of the synthesized NPLs was examined by X-ray diffraction in conjunction with simulations, revealing that the NPLs are monolayer monoclinic Nb12O29, thin in the [100] direction and extended along the b and c directions. Besides having monolayer thickness, NPLs show decreased intensity of Raman signal from Nb-O bonds with higher bond order when compared to bulk monoclinic Nb12O29, as interpreted by calculations. Progressive electrochemical reduction of NPL films led to absorbance in the near-infrared region (stage 1) followed by absorbance in both the visible and near-infrared regions (stage 2), thus exhibiting dual-mode electrochromism. The mechanisms underlying these two processes were distinguished electrochemically by cyclic voltammetry to determine the extent to which ion intercalation limits the kinetics, and by verifying the presence of localized electrons following ion intercalation using X-ray photoelectron spectroscopy. Both results support that the near-infrared absorption results from capacitive charging and the onset of visible absorption in the second stage is caused by ion intercalation.

Keywords

Niobium Oxides
Electrochromism
Colloidal Nanocrystals
Colloidal Synthesis
Smart Windows
2D Materials
Metallic Conductors

Supplementary materials

Title
Description
Actions
Title
SuppResults-04-09-2020
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.