Intramolecular Proton Transfer in the Isomerization of Hydroxyacetone: A Detailed Characterization Based on Reaction Force Analysis and the Bond Fragility Spectrum

02 April 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The mechanism of isomerization of hydroxyacetone to 2-hydroxypropanal is studied within the framework of reaction force analysis at the M06-2X/6-311++G(d,p) level of theory. Three unique pathways are considered: (i) a step-wise mechanism that proceeds through formation of the Z-isomer of their shared enediol intermediate, (ii) a step-wise mechanism that forms the E-isomer of the enediol, and (iii) a concerted pathway that bypasses the enediol intermediate. Energy calculations show that the concerted pathway has the lowest activation energy barrier at 45.7 kcal mol-1. The reaction force, chemical potential, and reaction electronic flux are calculated for each reaction to characterize electronic changes throughout the mechanism. The reaction force constant is calculated in order to investigate the synchronous/asynchronous nature of the concerted intramolecular proton transfers involved. Additional characterization of synchronicity is provided by calculating the bond fragility spectrum for each mechanism.

Keywords

proton tranfer
hydroxyacetone
reaction force
reaction electronic flux
bond fragility spectrum
computational chemistry

Supplementary materials

Title
Description
Actions
Title
joseph derricotte ijqc 2020 SI
Description
Actions
Title
geometries
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.