Non-Proteinaceous Complexes III and IV Mimicking Electron Transfer in the Mitochondrial Respiratory Chain

06 April 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Synthetic biology pursues the understanding of biological processes and their possible mimicry with artificial bioinspired materials. We explore the redox properties of magnetic iron oxide nanoparticles to mimic the redox activity of complexes III and IV towards cytochrome c. We demonstrate that these nanoparticles, incorporated as non-proteinaceous complexes III and IV in a mitochondrial cell membrane model, catalyze electron transfer similarly to natural complexes. The associated molecular mechanism was experimentally proven in solution and in a Langmuir- Blodgett film; the protein-nanoparticle interactions are governed mainly by electrostatic forces, followed by electron transfer between the iron sites of the nanoparticles and the heme group. This work presents the first experimental demonstration that inorganic nanostructured systems may behave as proteins in the cell membrane.

Keywords

Biomimetic material
Cytochrome c
Iron oxides nanoparticles
Direct electron transfer
Mitochondrial cell membrane model

Supplementary materials

Title
Description
Actions
Title
SI Repositorio
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.