NMR-TS: De Novo Molecule Identification from NMR Spectra

03 April 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

NMR spectroscopy is an effective tool for identifying molecules in a sample. Although many previously observed NMR spectra are accumulated in public databases, they cover only a tiny fraction of the chemical space, and molecule identification is typically accomplished manually based on expert knowledge. Herein, we propose NMR-TS, a machine-learning-based python library, to automatically identify any molecule from its NMR spectrum. NMR-TS discovers candidate molecules whose NMR spectra match the target spectrum by using deep learning and density functional theory (DFT)-computed spectra. As a proof-of-concept, we identify prototypical metabolites from their computed spectra. After an average 5451 DFT runs for each spectrum, six of the nine molecules are identified correctly, and proximal molecules are obtained in the other cases. This encouraging result implies that de novo molecule generation can contribute to the fully automated identification of chemical structures. NMR-TS is available at https://github.com/tsudalab/NMR-TS.

Keywords

NMR
de novo molecule generation
machine learning
ChemTS

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.