Machine-Learning Coupled Cluster Properties through a Density Tensor Representation

02 April 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The introduction of machine-learning (ML) algorithms to quantum mechanics enables rapid evaluation of otherwise intractable expressions at the cost of prior training on appropriate benchmarks. Many computational bottlenecks in the evaluation of accurate electronic structure theory could potentially benefit from the application of such models, from reducing the complexity of the underlying wave function parameter space to circumventing the complications of solving the electronic Schrödinger equation entirely. Applications of ML to electronic structure have thus far been focused on learning molecular properties (mainly the energy) from geometric representations. While this line of study has been quite successful, highly accurate models typically require a “big data” approach with thousands of train- ing data points. Herein, we propose a general, systematically improvable scheme for wave function-based ML of arbitrary molecular properties, inspired by the underlying equations that govern the canonical approach to computing the properties. To this end, we combine the established ML machinery of the t-amplitude tensor representation with a new reduced density matrix representation. The resulting model provides quantitative accuracy in both the electronic energy and dipoles of small molecules using only a few dozen training points per system.

Keywords

machine Learning
quantum chemistry
coupled cluster theory

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.