Abstract
The spread of the global COVID-19 pandemic, the lack of specific treatment and the urgent situation requires use of all resources to remedy this scourge. In the present study, using molecular docking, we identify new probable inhibitors of COVID-19 by molecules from Nigella sativa L, which is highly reputed healing herb in North African societies and both Islamic and Christian traditions. The discovery of the Mpro protease structure in COVID-19 provides a great opportunity to identify potential drug candidates for treatment. Focusing on the main proteases in CoVs (3CLpro/Mpro) (PDB ID 6LU7 and 2GTB); docking of compounds from Nigella Sativa and drugs under clinical test was performed using Molecular Operating Environment software (MOE). Nigelledine docked into 6LU7 active site gives energy complex about -6.29734373 Kcal/mol which is close to the energy score given by chloroquine (-6.2930522 Kcal/mol) and better than energy score given by hydroxychloroquine (-5.57386112 Kcal/mol) and favipiravir (-4.23310471 kcal/mol). Docking into 2GTB active site showed that α- Hederin gives energy score about-6.50204802 kcal/mol whcih is better energy score given by chloroquine (-6.20844936 kcal/mol), hydroxychloroquine (-5.51465893 kcal/mol)) and favipiravir (-4.12183571kcal/mol). Nigellidine and α- Hederin appeared to have the best potential to act as COVID-19 treatment. Further, researches are necessary to testify medicinal use of identified and to encourage preventive use of Nigella Sativa against coronavirus infection.