Copper-Graphene-TiO2 Hybrid Materials for Photocatalytically Assisted H2 Generation

01 April 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Hydrogen, as energy carrier, is a zero-emission fuel. Being green and clean, it is considered to play an important role in energy and environmental issues. Photocatalytic water splitting is a process used to generate hydrogen from the dissociation of water. Titanium dioxide is still the archetype material for photocatalytic water splitting. However, because of the fast recombination of the photo-generated exciton, the yield of the reaction is typically low. In this work, we have modified the surface of titanium dioxide with copper and copper/graphene to sensitise it to visible light, and to increase the spatial charge carrier separation, thus extending the quantum yield of H2 production from methanol/water mixtures. Results showed that, in the analysed system, exists an optimum amount of copper plus graphene (i.e. 0.5 mol% copper plus 0.5 wt% graphene) to grant a two-fold increase in the photocatalytic hydrogen generation compared to that of bare titania. That system proved itself to be complex and dynamic. This was attributed to the increased spatial charge carrier separation exploited by graphene (under 365 and 405 nm irradiation), and to the continuous reduction of Cu(II) to Cu(I) due to IFCT that has proven to be an excellent visible-light sensitiser in the copper/graphene-titania system.

Hybrid titania-copper-graphene materials could therefore be exploited in the field of light-to-energy applications.

Keywords

H2 generation
Photocatalytic Water Splitting
TiO2–CuxO junction
Graphene

Supplementary materials

Title
Description
Actions
Title
Cu-graphene-TiO2 H2 gen Supplementary Materials V0.2
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.