Double Ring-Closing Approach for the Synthesis of 2,3,6,7-Substituted Anthracene Derivatives

01 April 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Anthracene derivatives have been used for a wide range of applications and many different synthetic methods for their preparation have been developed. However, despite continued synthetic efforts, introducing substituents in some positions has remained difficult. Here we present a method for the synthesis of 2,3,6,7-substituted anthracene derivatives, one of the most challenging anthracene substitution patterns to obtain. The method is exemplified by the preparation of 2,3,6,7-anthracenetetracarbonitrile and employs a newly developed, stable protected 1,2,4,5-benzenetetracarbaldehyde as the precursor. The precursor can be obtained in two scalable synthetic steps from 2,5-dibromoterephthalaldehyde and is converted into the anthracene derivative by a double intermolecular Wittig reaction under very mild conditions followed by a deprotection and intramolecular double ring-closing condensation reaction. Further modification of the precursor is expected to enable the introduction of additional substituents in other positions and may even enable the synthesis of fully substituted anthracene derivatives by the presented approach.

Keywords

Anthracene
Ring-closing reaction
Wittig reaction
Condensation reaction
Photochromic compound
Scalable synthesis method
Nitriles

Supplementary materials

Title
Description
Actions
Title
SI final
Description
Actions
Title
all
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.