Molecular Recognition Promotes Band Alignment in 3-D Covalent Organic Frameworks for Co-Crystalline Organic Photovoltaics

29 November 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Covalent organic frameworks (COFs) have emerged as versatile, functional materials comprised of low-cost molecular building blocks. The permanent porosity, long-range order, and high surface area of 3D-COFs permit co-crystallization with other materials driven by supramolecular interactions. We designed a new subphthalocyanine-based 3-D covalent organic framework (NEUCOF1) capable of forming co-crystals with fullerene (C60) via periodic ball-and-socket binding motifs. The high co-crystalline surface area and long-range order of NEUCOF1 eliminates the typical surface area vs. structural order trade-off in organic photovoltaics (OPVs). We used plane-wave density functional theory (PBE) to minimize NEUCOF1 and NEUCOF1–C60 co-crystals and determine their electronic band structures. Molecular dynamics (MD) simulations showed that NEUCOF1–C60 is likely to be stable up to 350 K. The band structures at 0 and 350 K suggest that charge transfer to the C60 acceptors is favorable and that directional charge transport is possible for these co-crystalline OPVs.

Keywords

organic photovoltaics
density functional theory
molecular dynamics
covalent organic frameworks
co-crystals
molecular recognition
supramolecular chemistry
charge transfer activity

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.