Toward Simple, Predictive Understanding of Protein-Ligand Interactions: Electronic Structure Calculations Join Forces with the Chemist’s Intuition

11 March 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Contemporary efforts for modeling protein-ligand interactions entail a painful tradeoff – as reliable information on both noncovalent binding factors and the dynamic behavior of a protein-ligand complex is often beyond practical limits. In the following paper, we demonstrate that information drawn exclusively from static molecular structures can be used for the semi-quantitative prediction of experimentally-measured binding affinities for protein-ligand complexes. In the particular case considered here, inhibition constants (Ki) were calculated for eight different ligands of torpedo californica acetylcholinesterase using a simple, multiple-linearregression-based model. The latter, incorporating five informative and independent variables – drawn from QM cluster, DLPNO-CCSD(T) calculations and LED analyses on the eight complexes – is shown to recover no-lessthan 96% of the sum of squares for measured Ki values, and used to predict the inhibition potential for yet another ligand (E20, for which no Ki values are available in the literature). This thus challenges the widespread assumption that “static pictures” are inadequate for predicting reactivity properties of flexible and dynamic protein-ligand systems.

Keywords

protein-ligand
Noncovalent Interactions
coupled cluster
Local Energy Decomposition
chemical intuition
Multiple Linear Models

Supplementary materials

Title
Description
Actions
Title
ESI 2 01.03.20
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.