Abstract
The limited success in the prediction of structure is one of the most serious problems in the engineering of molecular crystals. Here we show that the packing of high-symmetry molecules such as ball-shaped rotating fullerenes, cube-shaped cubane and octahedral-shaped mesitylene dimers give rise to the formation of cubic cocrystals with easily predictable lattice parameters. We present the synthesis and structure determination of Sc3N@C80-Ih cocrystals with cubane (C8H8) and mesitylene (C9H12) and compare the new materials with related C60 and C70 based structures. In this family of materials, most atom-to-atom interactions are averaged out by the symmetry and the crystal structures can be described in terms of classical molecule-to-molecule interactions. Size-dependent homo- and heteromolecular contacts control the stability of the ball-cube and ball-octahedron systems creating several host-guest and recognition-controlled regions. The analysis of the global phase diagrams explains not only the stability of the observed materials, but also the instability of a missing derivative.
Supplementary materials
Title
suppinf
Description
Actions