Quantum Mechanics-Based Structure Analysis of Cyclic Monoterpene Glycosides from Rhodiola Rosea

02 March 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

NMR- and MS-guided metabolomic mining for new phytoconstituents from a widely used dietary supplement, Rhodiola rosea, yielded two new (+)-myrtenol glycosides, 1 and 2, and two new cuminol glycosides (3 and 4), along with three known analogues (57). The structures of the new compounds were determined by extensive spectroscopic analysis. Quantum Mechanics-driven 1H iterative Full Spin Analysis (QM-HiFSA) decoded the spatial arrangement of the methyl groups in 1 and 2, as well as other features not recognizable by conventional methods, including higher order spin-coupling effects. The application of QM-HiFSA will provide a definitive reference point for future phytochemical and biological studies of R. rosea as a resilience botanical. Application of a new NMR data analysis software package, CT, for QM-based iteration of NMR spectra is also discussed.

Keywords

Rhodiola rosea L
monoterpenoids

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.